Poster Session 1

GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

A Hybrid Approach to Equivalent Fault Identification for
Verification Environment Qualification

Chia-Cheng Wu
National Tsing Hua University,
Hsincu, Taiwan, R.O.C.

Hsin-Pei Wang
National Tsing Hua University,
Hsincu, Taiwan, R.O.C.

Teng-Chia Wang

National Tsing Hua University,
Hsincu, Taiwan, R.O.C.

Tung-Yuan Lee
National Tsing Hua University,
Hsincu, Taiwan, R.O.C.

De-Xuan Ji
National Tsing Hua University,
Hsincu, Taiwan, R.O.C.

Chin-Heng Liu
National Tsing Hua University,
Hsincu, Taiwan, R.O.C.

Yung-An Lai
National Tsing Hua University,
Hsincu, Taiwan, R.O.C.

Yan-Ping Chang
National Tsing Hua University,
Hsincu, Taiwan, R.O.C.

Chun-Yao Wang

National Tsing Hua University,
Hsincu, Taiwan, R.O.C.

Yung-Chih Chen
Yuan Ze University,
Chungli, Taiwan, R.O.C.

ABSTRACT

Fault-based verification technique is a method to qualify a ver-
ification environment. The better verification environment can
detect output differences between the fault-free and fault-injected
circuits with a higher probability. Since different injected faults
could cause the same output response under all stimuli, which are
called equivalent faults, maximally identifying these equivalent
faults can improve the efficiency of verification environment quali-
fication without sacrificing its quality. The 2016 CAD Contest at
ICCAD posed the problem of identifying equivalent faults in the
circuits. This paper presents our work in the Contest with some
improvements.

KEYWORDS

Verification environment qualification; fault injection; equivalent
fault identification; mandatory assignment (MA)

ACM Reference Format:

Chia-Cheng Wu, Tung-Yuan Lee, Yung-An Lai, Hsin-Pei Wang, De-Xuan
Ji, Yan-Ping Chang, Teng-Chia Wang, Chin-Heng Liu, Chun-Yao Wang,
and Yung-Chih Chen. 2018. A Hybrid Approach to Equivalent Fault Identi-
fication for Verification Environment Qualification . In Proceedings of Great
Lakes Symposium on VLSI 2018 (GLSVLSI’'18). ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3194554.3194635

1 INTRODUCTION

Functional verification is a task to confirm the consistency between
the implementation and specification. When designs are getting
more complex, the process of functional verification takes more

This work is supported in part by the Ministry of Science and Technology of Taiwan
under Grant MOST 106-2221-E-007-111-MY3, MOST 106-2221-E-155-056, MOST 103-
2221-E-007-125-MY3, and MEDIATEK Research Center Doctoral Talent Fellowship

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GLSVLSI’'18, May 23-25, 2018, Chicago, IL, USA

© 2018 Association for Computing Machinery.

ACM ISBN ISBN 978-1-4503-5724-1/18/05...$15.00
https://doi.org/10.1145/3194554.3194635

447

time and effort. Simulation-based verification [15] has been a com-
mon practice in verification community. However, due to the fact
that exhaustive simulation is infeasible for larger designs, coverage
metrics have been proposed to measure the quality of verification
and thus reduced the simulation cost.

Structural coverage metrics [8][13], also known as code coverage
metrics, are such techniques. However, most structural coverage
metrics only focus on activation of the design content from the
stimuli, but do not consider the abilities of stimuli to propagate
the error effects to observation points or Primary Outputs (POs).
Therefore, the higher coverages in these metrics do not always
imply the better quality of the verification environments. Thus,
Fault-based verification technique [7][1][4][2], which is an effective
approach for evaluating the quality of the verification environment,
has been proposed afterward.

By injecting artificial faults into the original implementation,
designers can examine whether the verification environment differ-
entiates the faulty and fault-free designs. If all the injected faults
can be detected, it indicates that the verification environment is
robust and effective to reveal errors; otherwise, the verification en-
vironment contains some weakness points for improvement. Thus,
the fault-based verification methodology does deal with the error
effect propagation issue that the structural coverage metrics do not.

Mutation analysis is a fault-based verification technique originat-
ing from the software engineering [17]. Based on two Hypothesis:
the Competent Programmer Hypothesis and Coupling Effect Hypoth-
esis, mutation analysis only targets at a subset of all potential faults
and assumes that these faults are sufficient to represent all faults.
Competent Programmer Hypothesis states that programmers de-
velop their programs very close to the correct version. Coupling
Effect Hypothesis assumes that complex faults can be coupled by
simple faults such that a test set detecting all the simple faults in a
program will detect a very high percentage of the complex faults
[6].

A commercial EDA tool, Certitude™™ [12][19], implements the
mutation analysis approach, where RT-level designs are usually
used for testbench qualification. Recently, ISO 26262 [16], which
is standard for defining functional safety of electrical and/or elec-
tronic systems of automobiles, has been deployed. In this standard,
artificial faults are injected into gate-level designs [10][9][11][16]

https://doi.org/10.1145/3194554.3194635
https://doi.org/10.1145/3194554.3194635

Poster Session 1

to see whether the verification environments can detect these faults
or not.

Since the injected faults at different locations could cause the
same output response under all stimuli, which are called equivalent
faults, only one of these equivalent faults need to be verified within
the verification environment. Thus, maximally identifying these
equivalent faults reduces the number of faults to be injected, and
improves the efficiency of a verification environment qualification,
i.e., the number of verification patterns is reduced without sacrific-
ing its quality. The 2016 CAD Contest at ICCAD [18] posed such
problem of identifying equivalent faults, i.e., the faults having the
same fault effect, in the circuits. Its formulation is as follows: Given
a set of fault models and the original netlist of design consisting of
two-input gates, to identify the equivalent faults maximally in the
netlist for elevating the verification efficiency under a single fault
injection mechanism.

In this paper, we present a hybrid approach to identify the equiv-
alent faults efficiently. The approach consists of four steps, and
they are fault collapsing, Mandatory Assignment (MA) calculation,
structural matching, and redundant fault identification. To complete
the description of the work, we will introduce all the steps in the
paper. However, the MA calculation and structural matching steps,
which are the main contributions of this work, will be emphasized.
Furthermore, from the experimental perspective, these two steps
also identify many equivalent faults within a few seconds.

2 PRELIMINARIES
2.1 Fault Model

11 types of fault models in the Contest are divided into three classes.

2.1.1 Stuck-at fault. The faulty wire is set to 0 or 1, and denoted
as SA0 and SA1, respectively.

2.1.2 Negated fault. The faulty wire is inverted and denoted as
NEG.

2.1.3 Gate-replacement fault. This fault changes the original
driver gate type of a faulty wire. The faults in this class are denoted
as RDOB_G, where G = { AND, NAND, OR, NOR, XOR, XNOR, NOT,
BUFF}.

2.2 Equivalent Fault

With the fault models, a faulty circuit is derived by injecting a single
fault into the original circuit. If two faulty circuits have the same
output response under all input stimuli, these faults are equivalent
faults.

3 EQUIVALENT FAULT IDENTIFICATION

This section presents the proposed algorithm for equivalent fault
identification. The algorithm consists of four steps and they are fault
collapsing, MA calculation, structural matching, and redundant
fault identification.

3.1 Fault Collapsing

The fault collapsing step is only applied to the stuck-at fault model
within a fanout-free region. This is because the fault-effect of a
single fault in the fanout-free region remains singularly. The idea of
fault collapsing is that when the fault-effect of two distinct stuck-at
faults are the same, they are equivalent faults. For example, in Fig.
1, the fault-effect at a is 1/0 (fault-free value/faulty value), and b
has to be assigned 1 to propagate the fault-effect 1/0 to c. For the
output ¢ SAO fault, the fault-effect at c is also 1/0, and b is also 1.
Thus, a SAO0 fault and ¢ SA0 fault have the same fault-effect and
they are equivalent faults.

448

GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

SA0
110 °7

1ra
1b

1(/;0 | lé(') SI'%() 1(/:0
) :D

(@)

Figure 1: Equivalent faults for an AND gate.

3.2 MA Calculation

The MA is the unique value assignment to a wire necessary for a
test to exist. The logic implication is a process of computing MAs
for a test. The MAs for a test on a wire w can be computed by setting
the fault-activating value or setting the noncontrolling values on
the side inputs of w’s propagating path. Then, these assignments
can be propagated forward or backward to obtain more MAs. Re-
cursive learning [14], can be used to perform logic implications
more completely. If the MAs of one fault are inconsistent, the fault
is untestable.

To detect the considered fault models, we have to derive their test
patterns. Different faults usually have different sets of test patterns.
For two distinct but equivalent faults, however, their test pattern
sets are identical. To express the test pattern set for a fault, we can
explicitly enumerate every test pattern. However, choosing this
way might be time-consuming. Thus, to express the test pattern
set of a fault compactly, we can use the idea of MA. This is because
MAs are the unique value assignments to wires necessary for a test
pattern to exist. That is, MAs are the common value assignments
to wires among all the test patterns of the fault. Unfortunately,
computing all the MAs for detecting a fault, which is equivalent
to deriving all the test patterns of a fault, is an NP-hard problem
[3]. Thus, we propose another method to determine the equivalent
faults based on a partial set of MAs as well as other information,
which will be explained in detail in the following paragraphs.

In the process of MA calculation, sometimes we cannot deter-
mine a unique value assignment for a fanin node from a known
MA at its output. Since these values are not unique for each fanin
node, they are not MAs. We name these fanin pairs active pairs.
For another example, in Fig. 2(a), to activate the fault-effect of
Faulty RpoB_NAND, the fanin nodes (h, i) = {(1, 1), (0, 1), (1, 0), (0,
0)}. This is because these value assignments can differentiate the
NAND and AND from their output values. However, to propagate
the fault-effect, we have to set (h, i) = (1, 1). As a result, only the
active pair (h, i) = (1, 1) is kept, and h = 1, i = 1 are MAs. Furthermore
b =01isan MA, and (j, k) = {(0, 1), (1, 0), (1, 1)} are active pairs by
backward logic implications from h and i, respectively.

To determine the equivalent faults, it is not necessary to de-
rive the test patterns for each fault. Here we propose the idea of
fault-effect influential region. When injecting a fault into a circuit,
certain subcircuit is influenced by the fault. We can construct the
fault-effect influential region for representing a fault. This region
is constructed in forward and backward directions. In the forward
direction, it is from the fault site to the fanout node of the fault-
propagating path or POs. In the backward direction, it is from the
fault site to the active pairs, the wire with MAs, or PIs. To determine
if two faults are equivalent or not, we can construct the fault-effect
influential region for each fault first. If the boundaries of these
two regions are identical, and the values on the boundaries are the
same, these two faults are equivalent faults. This is because the
circuit structures surrounding the fault-effect influential regions
are exactly identical. Thus, the fault-effects propagation from these
regions to the POs are the same. Theorem 1 is used for supporting
this equivalent fault identification.

Theorem 1 : Given two faults, if the boundaries of their fault-effect

Poster Session 1

Figure 2: An example of calculating MAs and active pairs
of two distinct faults injected into the same circuit. (a) An
RDOB_NAND fault occurs at g. (b) A SAO fault occurs at g.

influential regions are identical, and the values on the boundaries
are the same, these two faults are equivalent.

For example, in Fig. 2, consider injecting two distinct faults at
g Faulty RpoB_NAND and Faulty s4o in Fig. 2(a) and Fig. 2(b).
The dashed regions are their fault-effect influential regions. Since
the boundaries of the regions are identical and the values on the
boundaries are the same, these two faults are equivalent faults.

3.3 Structural Matching

Since computing all the MAs for a fault is computationally intensive,
the MAs derived in the last step might be incomplete for cost and
performance tradeoff. Thus, not every equivalent fault pair can be
identified. However, we can use structural properties to identify
additional equivalent faults. Since XOR and XNOR gates do not
have MAs on the side inputs, this step is especially useful for them
within fanout-free structures.

Next, we propose some conditions that assert the equivalence of
two distinct faults.

Condition 1:If the structures of two faulty circuits are identical,
these two faults are equivalent faults.

Condition 2 : For an XOR or XNOR gate within a fanout-free
structure, its input NEG fault and the output NEG fault are equiva-
lent faults.

Definition 1: A fanout-free chain is composed by two gates
with a Common Side Input (CSI), and the other two inputs, a, b, are
fanout-free as shown in Fig. 3. If only b is fanout-free, the chain is
called a loosened fanout-free chain.

According to the locations of equivalent faults in a fanout-free
chain, we further classify the equivalent faults into two classes and
they are summarized in TABLE 1. Here we only discuss one case
for class 1 and 2 in Condition 3-1 and Condition 3-2, respectively.

Condition 3-1 : For gate B = XOR and gate C = XOR in the
fanout-free chain, a SA1 (SA0) fault at a and a SA1 (SA0) fault at ¢
are equivalent.

b 1777
| gateB | | gateC p—cC

I | |

Figure 3: Fanout-free chain.

a
CSI

449

GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

When an input of an XOR gate is determined, the XOR gate
becomes a BUFF or NOT. Hence, we discuss this with a fixed CSI
value. In Fig. 3, since a, b are fanout-free, if the CSI is 1, the circuit
becomes two connected NOT gates, and the fault-effect at a can
be only propagated to c. Similarly, if CSI is 0, the circuit becomes
two connected BUFF gates, and the fault-effect at a can be only
propagated to c, too. Thus, the fault-effect at ¢ is the same as that
at a. That is, Fault, sao = Fault; sao and Fault, 541 = Fault; sa;.
The other three cases in class 1 can be explained in a similar way.

Condition 3-2 : For gate B = XOR and gate C = XNOR in the loos-
ened fanout-free chain, an RDOB_AND at b and an RDOB_NAND
at c are equivalent.

a 1100 b 1000 Lol
CSILio10 C

@

a 1100 b oiio Lot
CSILio10 c

®)
Figure 4: An example for Condition 3-2. (a) RDOB_AND at b.
(b) RDOB_NAND at c.

Table 1: Equivalent faults by structural matching.

class | gate B | gate C equivalent faults

XOR XOR aSA0 =c SA0,aSA1=cSA1
XNOR | XNOR | aSA0 =c SA0,aSA1=cSAl

1" "XOR | XNOR | aSA0=cSAL aSAI = c SAD
XNOR XOR a SA0 = ¢ SA1,a SA1 =c SA0
XOR | XNOR | b RDOB_AND = ¢ RDOB_NAND
XNOR XOR b RDOB_OR = ¢ RDOB_NOR

OR XNOR | b SA0 = c RDOB_NAND

2 TOR | XOR | bSA0=cRDOB_AND
AND XNOR | bSA1=cRDOB_OR
AND XOR b SA1 = ¢ RDOB_NOR

3.4 Redundant Fault Identification

After running the first three steps, we group equivalent faults into
a fault group. However, there might be groups of faults that are all
redundant faults, and should be merged into one group. Next, in
this step, we use SAT solvers to merge groups of redundant faults
together.

Instead of comparing each fault group with the fault-free cir-
cuit exhaustively, we propose a heuristic to elevate the efficiency.
We observed that the local functional difference between certain
faulty circuit and the fault-free one is very small. This value assign-
ment could be Satis fiability Don’t Cares (SDCs) of faulty circuit.
If this happens, the fault is a redundant fault. For example, when
an RDOB_XOR fault replaces an OR gate, the local functional dif-
ference between them is only input pair (1, 1). We call this fault a
redundant fault candidate. Then, we construct a Miter [5] from
this faulty circuit and the fault-free circuit and use SAT solvers to
verify if this redundant fault candidate is redundant or not. Using
this way, only the fault groups containing a redundant fault candi-
date are considered for checking by SAT solvers, and the efficiency
of this step is elevated.

4 EXPERIMENTAL RESULTS

The proposed algorithm was implemented in C++ and the experi-
ments were conducted on the official platform of the Contest. In the
experiment, we used the benchmarks which came from the 2016
CAD Contest [18] and compared the results with top three teams
in the Contest. The Contest used 4 hidden benchmarks, Case05 to

Poster Session 1

GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

Table 2: The experimental results on 2016 CAD Contest benchmarks.

. Team A Team B Team C Ours 100%
Bench. | [PI[| [PO] | gate] | Init. | Gold. 1 = e Japl [CPU | Cov. | lepl | CPU | Cov. | Jepl | CPU | Cov. | CPU
Case05 | 46 43 401 | 3098 | 2029 | 2044 | 0.4 | 985 | 2029 0.6 | 100 | 2029 1.0 | 100 | 2029 9.2 | 100 | 1221
Case06 | 13 14 648 | 5008 | 1020 | 1620 | 28.6 | 84.9 | 1020 | 41.6 | 100 | 1132 | 13.1 | 97.1 | 1132 | 44 | 97.1 | 3808
Case07 | 17 18 567 | 4352 | 1238 | 1870 | 149 | 79.7 | 1770 | 66.0 | 82.9 | 1492 | 41.2 | 91.8 | 1480 | 158 | 923 | 4011
e [-] -] -] -] -] -] -Jes] -] -Jos] -] -Joe3] -] -Joes|[-]
Table 3: The experimental results of each step for Case05 to Case07.
Case05 Case06 Case07
Bench. lgp| | Cov. | |gp reduced| CPU lep| | Cov. | |gp reduced| CPU legp| | Cov. | |gp reduced| CPU
Initial 3008 | - - - 5008 | - - - 4352 | - - -
Fault Collapsing 2810 | 26.9 288 <0.001 | 4628 | 17.1 380 <0.001 | 3969 | 123 383 <0.001
MA Calculation 2275 | 77.0 535 017 | 1447 | 893 3181 242 | 1820 | 813 2149 11.83
Structural Matching | 2029 | 100 246 <0001 | 1132 | 97.1 315 001 | 1492 | 9138 412 <0.001
Red. Fault Identification | 2029 | 100 0 9 1132 | 97.1 0 2 1480 | 923 12 4
Total 1 - - - 9.17 - - - 4.43 - - - 15.83
100% 2029 | 100 0 1211.81 | 1020 | 100 112 3803.51 | 1238 | 100 170 3995.30
Total 2 - - - 1221 - - - 3808 - - - 4011

Case08, to evaluate the performance of each team. However, for
confidentiality reasons, the Case08 benchmark was not publicly
released from the Contest such that we cannot get the benchmark
for the experiments.

The experimental results of our work and the top three teams in
the Contest are summarized in TABLE 2. In TABLE 2, the first four
columns show the benchmark information, which are all combina-
tional. Columns 5 and 6 show the numbers of initial fault groups
(Init.) and the golden results (Gold.). The golden results represent
the maximal grouping of equivalent faults, which were obtained
from the Contest. Any two fault groups in the golden result can be
distinguished by at least one input vector. The next columns show
the announced results of the top three teams, including the number
of equivalent fault groups (|gp|), the CPU time measured in second
(CPU), and the coverage (Cov.), from the Contest. The Cov. column
is calculated by (Init. - |gp|) / (Init. - Gold.). Column Ours shows
the corresponding results of our approach. We also show the CPU
time of an approach for having 100% coverage in the last column.
The approach for having 100% coverage uses SAT solvers to verify
if any two fault groups from our results are functionally equivalent
after conducting all the steps in Section III.

TABLE 3 also breaks down the results. The Cov. column repre-
sents the accumulated coverage from the initial step to the current
step. The |gp reduced| column shows the number of fault group
reduced in each step, and the CPU column represents the CPU
time in each step. The Total 1 row shows the total CPU time used
for all the steps in Section III. The Total 2 row shows the amount
of CPU time needed for achieving 100% coverage. Our approach
cost 9 seconds in the redundant fault identification step without
reducing any group number for Case05. For Case07, the redundant
fault identification step merges 12 fault groups while cost 4 seconds.
However, for achieving 100% coverage, additional 3995 seconds
were needed.

According to TABLE 2, our work achieved higher or equal cover-
ages for all the benchmarks than the top three teams. Our average
coverage is 96.5%. Furthermore, we can observe from TABLE 3
that the first three steps of our approach can achieve high cover-
ages efficiently for each case. In some cases, we may spend extra
time performing the step 4 without getting additional coverages.
Nevertheless, with the step 4, we can identify redundant faults in
acceptable CPU time.

450

5 CONCLUSION

Injecting artificial faults can examine whether the verification en-
vironment differentiates the faulty and fault-free designs. By maxi-
mally identifying equivalent faults, we can improve the efficiency
of verification environment qualification. In this work, we propose
a hybrid approach to identify equivalent faults in a circuit. In the
experiment, the results show that our approach reached the high-
est average coverage on the hidden benchmarks compared to the
winners of the Contest within 20 seconds CPU time.

REFERENCES

[1] A.Benso et al. 2007. A functional verification based fault injection environment.
In Proc. Defect and Fault-Tolerance in VLSI Systems.

[2] A.Fin et al. 2000. A VHDL error simulator for functional test generation. In Proc.

Design, Automation and Test in Europe.

] A. Veneris et al. 2002. Design rewiring using ATPG. In IEEE Trans. CAD.

[4] F.Ferrandi et al. 1998. Implicit test generation for behavioral VHDL models. In

Proc. Int. Test Conference.

[5] F. V. Andrade et al. 2008. Improving SAT-based combinational equivalence
checking through circuit preprocessing. In Proc. of Int. Conference on CAD.

[6] H.Y.Lin et al. 2012. A probabilistic analysis method for functional qualification
under mutation analysis. In Proc. Design, Automation and Test in Europe.

[7] J. Arlat et al. 1993. Fault injection and dependability evaluation of fault-tolerant
systems. In IEEE Trans. Computers.

[8] J. C. Miller et al. 1963. Systematic mistake analysis of digital computer programs.
In Commun. ACM.

[9] L. Pintard et al. 2013. Fault injection in the automotive standard ISO 26262: An
initial approach. In Proc. European Workshop on Dependable Computing.

[10] L.Pintard et al. 2014. From safety analyses to experi-mental validation of auto-
motive embedded systems. In Proc. of Pacific Rim International Symposium on
Dependable Computing.

[11] L. Pintard et al. 2015. Using fault injection to verify an AUTOSAR application
according to the ISO 26262. In Society of Automotive Engineers Technical Paper.

[12] M. Hampton et al. 2007. Leveraging a commercial mutation analysis tool for
research. In Proc. Testing: Academic and Industrial Conference Practice and Research
Techniques - Mutation.

[13] S. Tasiran et al. 2001. Coverage metrics for functional validation of hardware
designs. In IEEE Design and Test of Computers.

[14] W. Kunz et al. 1994. Recursive learning: A new implication technique for ef-
ficient solutions to CAD problems-test, verification, and optimization. In IEEE
Trans. CAD.

[15] W.Kunz et al. 2005. Hardware design verification: Simulation and formal method-

based approaches. In Prentice Hall.

International Organization for Standardization. [n. d.]. https://www.iso.org/.

R. Hamlet. 1977. Testing programs with the aid of a compiler. In IEEE Trans.

Software Engineering.

[18] ICCAD. [n. d].
ICCAD2016/.

[19] Synopsys. [n. d.]. https://www.synopsys.com/.

=

http://cad-contest-2016.el.cycu.edu.tw/CAD-contest-at-

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Fault Model
	2.2 Equivalent Fault

	3 Equivalent Fault Identification
	3.1 Fault Collapsing
	3.2 MA Calculation
	3.3 Structural Matching
	3.4 Redundant Fault Identification

	4 Experimental results
	5 Conclusion
	References

